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The electron temperature gradient mode has been proposed as a primary mechanism for electron
transport. The possibilities of magnetic secondary instabilities !‘‘zonal’’ magnetic fields and
magnetic ‘‘streamers’’" are investigated as novel potential mechanisms for electron transport
regulation and enhancement, respectively. In particular, zonal magnetic field growth and transport
regulation is investigated as an alternative to electrostatic zonal flows. Growth rates and implications
for electron thermal transport are discussed for both electrostatic and magnetic saturation
mechanisms. The possibility of magnetic streamers !mesoscale radial magnetic fields", and their
potential impact on electron thermal transport, is also considered. © 2002 American Institute of
Physics. #DOI: 10.1063/1.1496761$

I. INTRODUCTION

A key issue in magnetic confinement fusion is the under-
standing of microturbulence which is believed to drive
anomalously high levels of transport. Although this problem
has been intensively studied in the context of ion-
temperature gradient !ITG" turbulence !likely the primary
cause of ion particle and heat transport" a similar understand-
ing of electron transport has not been achieved. There are
several outstanding issues in the area of electron transport.
The foremost issue is the need to identify the underlying
instability process causing said transport. Several pieces of
experimental evidence point towards the electron tempera-
ture gradient !ETG" mode. Work by Stallard et al.1 suggests
that electron transport coefficents are weakly affected or un-
affected by the shear flows believed to regulate the ITG
modes, suggesting an electron transport mechanism which
has a smaller characteristic scale and larger growth rate than
the ion turbulence. The ETG mode satisfies both of these
criteria. Their observations also suggest that the measured
electron temperature gradient is close to the marginally
stable value of the linear ETG mode. More recently, Ryter
et al. have published evidence that electron tranport and tem-
perature profiles are determined by a critical gradient length.2
However, it should be noted that there are other modes !no-
tably short-wavelength collisionless trapped electron modes3
and ‘‘drift-islands’’ 4,5" which may also be able to explain
some of these results. Indeed, it has not been conclusively
shown that only one mode is responsible for electron trans-
port. Also particularly challenging is to understand electron
transport mechanisms which can function in the presence of
transport barriers or other conditions which quench particle
and thermal ion transport. In this paper, we restrict ourselves
to the ETG mode.

Traditionally, one calculates the magnitude of turbulent
transport based on mixing-length or quasilinear estimates of

the turbulent flux. As such calculations require a determina-
tion of the turbulent spectrum, the question of nonlinear satu-
ration mechanisms naturally arises. Analytic6,7 and computa-
tional work8 has demonstrated that ITG turbulence saturates
via a nonlinear transfer of energy to shear flow modes,
termed zonal flows, which are toroidally and poloidally sym-
metric. The zonal flows have a predominantly poloidal flow
component !certainly no radial flow", preventing them from
tapping the free energy of the system to drive transport, and
are damped due to ion–ion collisions. The combined system
of zonal flows and turbulence can be described by a
predator–prey-type model, in which total wave energy is
conserved. Because of the close analogy with the ITG mode,
we investigate the ETG mode9–11 for similar dynamics. It
should be noted that such flows have been observed in simu-
lations of ETG turbulence,12 in the special case of a magnetic
field with a local minimum, and with %De!&e . Due to in-
tuitive expectations that electromagnetic effects are more im-
portant in the ETG case than ITG, we also investigate the
possibility of zonal magnetic field generation as a possible
saturation mechanism. Zonal magnetic fields are mesoscale
poloidal magnetic fields with ky"kz"0, which would satu-
rate the turbulence via random magnetic shearing instead of
‘‘flow’’ shear !see Appendix B for more details". The genera-
tion of such fields in the context of explaining the low to
high confinement !L–H" transition has been studied by Guz-
dar et al.13 Zonal fields are also discussed in Gruzinov
et al.14 and Diamond et al.7 In this paper, we are interested in
studying their general effectiveness as saturation mecha-
nisms for ETG turbulence. We also consider zonal flow/field
generation in the context of a random phase approximation
!RPA" modulational instability, appropriate for fully devel-
oped wave-turbulence, rather than the four-mode coherent/
parametric approach taken by Guzdar and co-workers.

A more recent developement in the study of ITG and
ETG modes has been the discovery of ‘‘streamers,’’ 7,11,15,16
which are radially extended convective cells. In particular, it
has been argued that streamers represent a mechanism fora"Electronic mail: cholland@physics.ucsd.edu
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describing the bursty or ‘‘intermittent’’ transport often ob-
served in simulation and experiment, and provide a route to
enhancing transport well beyond gyro-Bohm levels. In simu-
lations of ETG turbulence, electrostatic streamers have been
observed in certain parameter regimes.11 Jenko et al. argue
that these streamers are a necessity for enhancing electro-
static ETG transport to experimentally relevant levels. Fol-
lowing the zonal flow/field analogy, we also investigate the
possibility of magnetic streamers. Magnetic streamers are
radial mesoscale magnetic fields, produced by secondary in-
stability, with the potential for greatly increased thermal
transport. They are extended cells in Bx and By , providing a
radial magnetic connection mechanism. They also represent
an intriguing extension of a traditional convention of ETG
turbulence, which is to heuristically invoke inverse cascade
processes as a mechanism for increasing the correlation
length of the turbulence to the electron skin depth, with a
resultant increase in turbulent flux.

The structure of the paper is as follows: In Sec. II, we
present the analytic model used, and discuss the basic phys-
ics and linear dispersion relations. In Sec. III, zonal modes
are investigated, whereas streamer physics is studied in Sec.
IV. A summary and discussion of the results is given in Sec.
V.

II. MODEL EQUATIONS

The full description of the electromagnetic ETG mode in
general geometry, including nonlinear effects, requires a for-
midable set of equations. In this work, we use the model
presented in Horton et al.,10 in a local limit; a similar set of
equations is used in Ref. 16. Equations for electron vorticity
and pressure, as well as Ohm’s Law, are used to describe the
evolution of the electrostatic potential, electron pressure, and
parallel magnetic potential. This model assumes that there is
no magnetic shear or parallel magnetic fluctuations, but does
include the diamagnetic heat flux. It also assumes the ions to
be fully adiabatic, since k!& i'1. The perpendicular mag-
netic field fluctuations are then driven purely by the current
arising from the fluctuating electron parallel velocity, allow-
ing us to write v !"(!

2 A ! , using the normalizations defined
below. The dominant nonlinearities are assumed to be vE#B

•“! f")* , f + and B̃!•“! f"$ (,/2) )A ! , f +, again using the
normalizations defined below. The model equations are
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The Poisson brackets are defined as ) f ,g+" ẑ"(“ f
#“g). The various quantities are normalized as *
"(Ln /&e)$e$*̃/Te , A !"(2LnvT /,&ec)$e$Ã ! /Te , p
"(Ln /&e) p̃/p0 , L f"$d ln f/dx, 0"Ln /LTe, /"Ln /LB , -
"Te /Ti , ,"82p0 /B0

2, x ,y→x ,y /&e , z→z/LN , t
→Lnt/vTe , and 1"5/3. In particular, we have normalized
the field quantities to the mixing length level !i.e., *, A ! ,
p%&e /Ln according to mixing length estimates, or are 31
with this normalization". Note that damping terms, particu-
larly thermal conduction, are neglected here !restricting the
validity of the equations to regimes of weak collisionality,
appropriate for the core region of tokamaks". Simulations by
Labit and Ottaviani17 suggests that their effects are weak.

Physically one can interpret the nonlinear terms as: elec-
trostatic and magnetic Reynolds stresses driving the vorticity,
current and magnetic field advection in Ohm’s Law, and con-
vection of pressure along with the magnetic Reynolds stress
driving the pressure. It is also useful to bear in mind that
Eqs. !1" and !2" suggest that the relevant basic length scale
for * is &ei"&e /-1/2, while A ! will scale with the collision-
less skin depth c/4pe",$1/2 !in the normalized units used
here".

Basic dynamics and linear physics: A number of authors
have investigated and documented the linear physics of ETG
modes !see, e.g., Refs. 9, 10". Therefore, we provide only
a brief overview here. First, it is useful to consider the
energetics of the mode. Defining E*" 1

25d3x(-$*$2
%$(!*$2), EA" 1

25d3x(,/2 $(!A !$2%$(!
2 A !$2), and Ep

"1/2 5d3x$p$2, it is easy to show that
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using the identity 5d3x f ) f ,g+"0. The energy of the system
grows as the electrostatic turbulent flux Q turb

ES "5d3xpvx
"5d3xp($ (.*/.y)) extracts energy from the mean gradi-
ents. It is interesting to note that in this model, magnetic
fluctuations redistribute energy between the fields, but that
the electromagnetic flux QEM"v !Bxp/B0 does not contribute
to the growth of total fluctuation energy.

Let us now consider the linear dispersion relation. Fou-
rier analyzing in time and space, we can combine Eqs. !1"–
!3" together to find the linear dispersion relation,
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In the limit that k ! is unimportant, and neglecting the
diamagnetic heat flux, one can determine the dispersion re-
lation to be
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The solutions are a marginally stable drift oscillation arising
from the parallel dynamics, and the electrostatic curvature-
driven ETG mode, which is the mode of interest. The solu-
tion in this limit is 40"4r

0%i60"$ #ky/2(-%k!
2 )$

%i$ky$!(//-%k!
2 )(0$0c)1/2, 0c%1/(4/-)$1. It is impor-

tant to note that as the model used is only valid for k!&e
71, a more detailed derivation of quantities such as 0c to
include full finite Larmor radius !FLR" effects is not neces-
sarily meaningful, and potentially misleading. We treat the
finite , and k ! effects perturbatively to find their contribu-
tions to the dispersion relation. One finds
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2 ), and d
"0%1$1 . It is easy to see that k ! effects are stabilizing,
and introduce a frequency shift whose sign is parameter de-
pendent. The growth rate from Eq. !5" is plotted in Fig. 1 for
typical parameters !-"1, 0"3, /"0.1, and ,"0.04". The
stabilizing effects of k ! as well as FLR stabilization at high
k! are clearly seen.

III. ZONAL MODE EQUATIONS
A. Zonal mode generation

We first consider zonal modes, because of greater famil-
iarity with their nonlinear dynamics. Conceptually, we
assume that there is a spectrum of non-axisymmetric,
‘‘fast’’/small scale !small but finite k ! , k!3&e

$1" modes rep-
resenting the turbulence. Then based on experience with the
generic drift waves and the ITG mode6,7 we average the base
equations over fast time and space scales !denoted by tildes"
and investigate the possibility of a modulational instability
for a ‘‘slow’’ (k&&e

$1) mode with poloidal and toroidal sym-
metry (./.y"./.z"0). For the slow mode, averaging
yields
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Note that the polodial symmetry (./.y"0) of the slow
mode makes it completely insensitive to the linear drive
terms of the base equations, and reflects that such modes are
necessarily nonlinearly generated. The C* term represents a
generalization of the Rosenbluth–Hinton collisional damping
term for electrostatic zonal flows,18 with CA and Cp represent-
ing collisional parallel resistivity and diffusion for Ā ! and p̄ ,
respectively. Physically, the zonal modes are damped by an
effective friction between the kinetic electron response to the
mode and trapped electrons. It should also be noted that in
the spirit of analogy between ITG and ETG physics, one
might expect C*9:ee , and CA9:ei , relative to : ii in the ITG
case. As :ee%:ei': ii , it is likely that collisional damping
of zonal modes may be even more important in ETG than
ITG turbulence.

We now assume that we can describe the underlying
fluctuations via a quasilinear approach, such that

Ã ! ,k%kz
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2
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We can reexpress the nonlinear terms as functions of $*̃k$2,
using these quasilinear responses, and known properties of
the Poisson brackets !see Appendix A", as

FIG. 1. Linear growth rate for -"1, 0"3, /"0.1, and ,"0.04.
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To close these equations, we exploit the scale separation be-
tween the underlying turbulence and the slow mode by using
the wave-kinetic equation to calculate the response of the
turbulence to the zonal modes. Such an approach exploits the
fact that large-scale modulations of the small-scale fields
conserve the action or quanta number !Nk"Ek /4k , where Ek
is the energy of mode k" of the small-scale fields. This ap-
proach is valid due to the time-scale separation between the
slow and fast modes. Generically, there will be an adiabatic
invariant of the form

Nk"Nk! $*̃k$2,$Ã ! ,k$2,$ p̃k$2". !21"

Standard substitution of the quasilinear relations allow us to
write Nk"Nk($*̃k$2), which in turn allows us to express the
modulated nonlinear drive terms as functions of Nk via
8$*̃k$2"(8$*̃k$2/8Nk)8Nk";k8Nk . The adiabatic invariant
Nk couples the turbulence to the slow mode via the wave-
kinetic equation,
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where 4nl and 6nl are the frequency and growth rate of the
underlying turbulence in the presence of the slowly-varying
fields, and the first term of the right-hand side represents
linear growth of the turbulence, while the second term cor-
responds to higher-order interactions. To find 4nl , one can
modify the linear mode equations to reflect that the primary
effect of the slowly-varying mode on the small scales is con-
vection of fast modes by the slow, via . t→. t%)*̄ ,+, k !

→kz$ (,/2) )Ā ! ,+; we also note that inclusion of a slow
varying pressure will create an effective pressure gradient
0eff"0$(xp̄. One can then write 4nl as the sum of the origi-
nal linear dispersion relation and an effective Doppler shift
from the slowly varying fields (vg!".4k /.kz),
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where we have taken 84k /80%0, as it enters only through
FLR effects. Equation !23" underscores that the small-scale
turbulence will be sheared by both the electrostatic and elec-

tromagnetic potentials, i.e., it feels both flow and magnetic
shear !see Appendix B for a more complete discussion". It is
also important to note that the growth rate is modified by the
presence of the slow modes. The modified growth rate can be
expressed as
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.6k
.0

(xp̄ . !24"

The wave-kinetic equation then takes the form,
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Expressing the action density as the sum of a mean back-
ground and a coherent response (Nk"Nk%8N), one can lin-
earize the wave-kinetic equation to find an expression for
8N ,
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6q and q are the growth rate and wave number of the large
scale perturbation, and R(qvgx)"1/(<4k%(6q%ıqvgx)),
where <4k now encompasses both the linear growth rate and
nonlinear frequency shift of the underlying turbulence, and
6q is the growth rate of the zonal modes. One can now close
the zonal mode equations via substitution of 8Nq into Eqs.
!13"–!15". However, it is useful to first consider the various
k-space symmetries of the nonlinear drive terms and 8Nq . In
particular, examination of the quasilinear responses indicates
that RA is odd in kz , while Rp is even. Additionally, vg! and
.6k /.kz are also odd in kz , while .6k /.0 is even. Thus,
upon substitution of 8Nq into Eqs. !13"–!15", and integration
over kz , one finds that the equation for zonal magnetic po-
tential decouples from the electrostatic potential and pressure
equations. Therefore, zonal magnetic field dynamics are ef-
fectively decoupled from electrostatic zonal flow dynamics!
One can also use kx symmetry to show that *̄q and p̄q are
essentially independent, with p̄q acting as a passive scalar for
the zonal mode case, as well as to simplify the zonal field
equation. The resulting equations of interest are
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It is now straightforward to find growth rates for the electro-
static and magnetic modes, so that

6q
*"

q4

-%q2 & d3kky
2" 1$

,

2 $RA$2# R!qvgx"
;k

#" $kx
.N̄k

.kx
# $:* , !29"

6q
A"

,q4/2
,/2%q2 & d3k !$ky

2RA
Revgz"

R!qvgx"
;k

#" $kx
.N̄k

.kx
# %

,q2/2
,/2%q2 & d3k" k!

2%
,

2 !1$Rp
re" #

#" ky2RA
im .6

.kz
# R!qvgx"

;k
N̄k$:Aq2. !30"

We have explicitly rewritten C* and CA to demonstrate
their physical meanings !collisional friction and resistivity,
respectively". Examination of Eq. !29" shows that the growth
rate of the electrostatic zonal flow is reduced relative to the
ITG case because of fully adiabatic ions, and the stabilizing
effects of the magnetic Reynolds stress. An interesting prob-
lem is to elucidate the conditions for if/when the magnetic
Reynolds stress will completely stabilize the growth of *̄q .
Examination of Eq. !16" for RA shows that $RA$29kz

2/ky
2 ,

one can then write
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Equation !31" shows that the competition between the elec-
trostatic and magnetic Reynolds stresses can be cast as the
difference between mean ky

2 and kz
2 of the turbulence, or in

other words, that (ky
2)1/2 must be greater than a critical wave

number kc for * to grow, where
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If one estimates kz
2%(//qB)2ky

2 !where qB is the safety fac-
tor", it would appear that in general the magnetic Reynolds
stress would be, at best, weakly stabilizing #that is, one
would expect ,/2(//qB)2 f(1]. One must quantify the
‘‘proportionality function’’ f , and especially its , depen-
dence, to verify this suggestion.

An understanding of zonal magnetic field growth re-
quires a more extensive analysis, as indicated by the relative
complex of Eq. !29" vs !30". Such an analysis is most easily

done by first considering some basic dependencies of the
relevant quantities. In particular, one can estimate RA

re

9$kz /ky , RA
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$bc)kz /ky . These expressions allow one to rewrite Eq. !30"
!momentarily ignoring the damping :A" as
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To interpret this result physically, it is useful to consider the
original Ohm’s Law equation #Eq. !2"$. It is clear that the
nonlinearites correspond to electrostatic convection of cur-
rent and magnetic field fluctuations. Thus, the electrostatic
turbulence amplifies small-scale magnetic fluctuations into
larger-scale magnetic fields! Zonal magnetic field generation
can be clearly viewed as a kind of small-scale dynamo
action.19 Observing that this derivation has assumed q71, it
is also interesting to note that the zonal field growth is driven
primarily by the term arising from modulation of the growth
rate, rather than the frequency modulation term. In contrast,
the modulation of the linear growth rate gives no contribu-
tion to the electrostatic mode growth rate. One can also note
that like the linear fluctuations, the zonal electrostatic poten-
tial length scale is set by &e , while the zonal field length
scale depends on the collisionless skin depth. Finally, it
should be noted that the zonal modes and turbulence form a
connected system,6 and that the zonal modes back-react on
the turbulence even as the turbulence generates these modes.
For a more complete discussion of this issue, the reader is
again referred to Appendix B.

B. Estimations of transport

As alluded to in the introduction, the key question for
any investigation such as this is ‘‘What level of transport is
the mode expected to produce?’’ We address this question
here. The turbulent radial heat flux Qx is

Qx"= p̃ ṽx>" ' p̃" $
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Keeping only second order correlations, the electromagnetic
heat flux can be written as
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The k-space symmetries of each term !ky for the first, k ! via
RA for the second and third" reduce the electromagnetic heat
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flux to zero. One might argue that the vanishing of the first
term is a function of using triply periodic boundary condi-
tions. This term can be rewritten as
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Thus, the only remaining term upon averaging over flux sur-
faces is the radial gradient of the magnetic Reynolds stress,
which will yield a transport much lower than that suggested
by static stochastic field estimates.20 With some consider-
ation, this result should not be surprising, as it is well known
that ambipolarity limits the particle diffusion predicted by
such estimates. It should also be noted that consideration of
the energy equation #Eq. !4"$ indicates that only electrostatic
transport introduces energy into the system, while the mag-
netic nonlinearites redistribute the energy between various
fields.

It is also instructive to consider potential transport aris-
ing from parallel conduction. In a collisional regime !e.g.,
near the edge, but not in the core", a radial heat flux of the
form Qx"(B̃x /B0)Q !"$@ !$B̃x /B0$2dT0 /dx might be ex-
pected, which would appear to have a potentially large mag-
nitude. However, when one takes into account the fact that
this expression is derived from Q !"$n0@ !(!T , and B"“T
%0, it becomes clear that collisional parallel transport along
magnetic fluctuations cannot lead to experimentally relevant
levels of electron heat transport !particularly in the core re-
gion".

We are then left with only the electrostatic heat flux,

Qx
E#B"= p̃ ṽx>%pe0v te?

k
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)2 !37"
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Using Q"$n0AdTe /dx"pe0A/LT , and defining AGB
"&e

2vTe /LT , one finds
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We are now left with estimating the saturated intensity level
of the turbulence, which is accomplished via use of a simple
re-expression of the previously derived equations. Equations
!29"–!30" are rewritten as

.*̄q

.t "B*E*̄q$:**̄q , !40"

.Āq

.t "BAEĀq$:Aq2Āq . !41"

E"Nk/;k"(Ln /&e)2$e*̃/Te$2 is the intensity of the small-
scale turbulence, and we have written 6q

*"B*E and 6q
A

"BAE. Note that the gradient length used for normalizing
the base equations is Ln , but as the mode is driven by the
temperature gradient, it is more appropriate to use LT when
estimating mixing-length transport coefficents. In steady-
state, the turbulence intensity is set by the balance between
the nonlinear growth and linear damping of the zonal mode.
The saturated intensity !in normalized units" and correspond-
ing thermal diffusivity !in unnormalized units" for the case of
electrostatic zonal flow saturation are
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where k0 is a mean ky of the turbulence, and kc was defined
in Eq. !32". For zonal field saturation, one finds
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Here, kz
2 is again estimated as (//qB)2k0

2 , where qB is the
safety factor.

Consideration of AA offers an intriguing possibility. If
q(c/4pe)!1, Eq. !45" suggests that AA9(0$0c)/, . Such a
scaling would be very appealing, as it offers the possibility
of good agreement with experiment. In particular, one
achieves a ,$1-dependent scaling, without invoking in-
creased correlation lengths of the turbulence, and consider-
ing only electrostatic transport. This result offers not only an
interesting route to a neo-Alcator-type scaling, but may also
offer some insight into the results presented in Ref. 21,
which describes ETG turbulence creating a Ae due only to
electrostatic transport, but which exhibits ,$1 scaling. Labit
and Ottaviani also observe decreasing transport with increas-
ing ,.17 Clearly, then, the saturation mechanism for zonal
field is crucial. We have taken here the simplest possibility,
which is a purely collisional damping with no , dependence.
If, however, zonal field growth is limited by a ‘‘tertiary’’
instability,11,22,23 one could easily imagine that the , scaling
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of Ae could readily change. For a zonal magnetic field, such
an instability might take the form of something akin to a
microtearing mode, rather than the Kelvin–Helmholtz-type
modes described in Refs. 11, 22, and 23. Thus, stability of
zonal fields is an issue that demands further investigation.
The requirement of zonal field scale smaller than skin depth
for the ,$1 scaling also highlights the importance of inves-
tigating the scales of the secondary instabilities. In the con-
text of , dependencies of Ae , one should also consider the
role of the k0$kc term for the electrostatic case, which rep-
resents the competition between electrostatic and magnetic
Reynolds stresses. It is clear that the magnetic Reynolds
stress is a stablizing factor for the electrostatic zonal flow,
and should be more effective for increasing ,. Qualitatively,
increased stabilization of the zonal flow with , leads to a
higher saturated intensity level, and thus a higher transport
level. However, a more quantitiative investigation is needed.
It is also interesting to note that both modes give different /
scalings. Finally, it should be noted that the absolute magni-
tudes of the predicited thermal diffusivities may be con-
strained by their explicit dependence on collisionality, which
has been assumed to be small in the analytic model used
here.

C. Discussion

These simple considerations of transport suggest several
interesting questions whose answers could shed more light
on the physics of electron transport. First, the physics of
collisionality and zonal mode saturation remains a key issue.
In ITG turbulence, the competition of ‘‘tertiary’’ instabilities,
back-reaction on the turbulence, and collisional flow damp-
ing as secondary instability saturation mechanisms is an
open issue. Investigation of analogous tertiary instabilities
for ETG secondary modes is an obvious question, and such
studies are underway. In particular, whether such tertiary in-
stabilities will be able to compete with :* , :A3:ee is of
particular interest. A more detailed investigation of :A and
tertiary instabilites of the zonal field is particularly warranted
in light of the potential , scalings for Ae our analysis sug-
gests. One could also make a more pessimistic observation,
and note that if the relevant collisional time scale for ETG is
truly :ee , it is possible that the damping may kill the zonal
modes outright unless the turbulence reaches a much higher
intensity level, relative to the ITG case. The different effects
of , on electrostatic and magnetic modes are also interesting.
An intriguing question to ask is if there is a critical , at
which zonal fields become the dominant saturation mecha-
nism, rather than zonal flows. The limitation of negligible
magnetic flutter transport is counterintuitive to the ‘‘conven-
tial wisdom’’ in ETG turbulence, which has often qualita-
tively invoked flutter transport as the dominant transport
mechanism. However, negligible flutter transport is in agree-
ment with the simulation results of Jenko et al.,11,21 as well
as Labit and Ottaviani.17 It would be interesting to determine
what additional physics could be added to the model !if any",
to break this constraint. Unless such physics is found, this
limitation would appear to invalidate many of the earlier
models. One would also like to quantify the effects of mag-

netic shear and geometry on the transport, as well as the
impact of nonadiabatic ions. Finally, we suggest that many of
the predictions and questions raised in this section could be
addressed via existing codes, not the least of which would be
to simply see if zonal fields are in fact generated in ETG
simulations.

IV. MAGNETIC STREAMERS

In both ETG and ITG simulations, radially extended
electrostatic convective cells are observed. These cells,
termed streamers, are found to greatly enhance the turbulent
transport. The possibility of zonal magnetic fields naturally
leads to question of magnetic streamers. By magnetic
streamers, we mean radially extended convective cells in Bx .
They would be similar to magnetostatic convective cells, but
are expected to have a finite real frequency. Based on previ-
ous analytic studies of electrostatic streamers in ITG turbu-
lence, we undertake a similar study here. The approach used
is similar to that of the zonal case, except now we look for
modes with (x&(y , and (z%0. Structurally, these equations
will be similar to those of the zonal modes, and in particular,
it is clear that the kz symmetry of the fluctuations will also
decouple the magnetic streamer from the electrostic mode.
The equation for magnetic streamer modes is
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.Ā !

.y

")*̃ ,(!
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2Ā ! . !46"

The equation is again closed via an appeal to wave-kinetics,
with the adiabatic invariant response now

8Nq"" $q2kxvg!

.Nk

.ky
%iqkx

.6

.kz
Nk# ,2 R!qvgy"Āq .
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Carrying out the analysis is a similar fashion to the zonal
mode, one finds that the streamer has a real frequency Cq
and growth rate 6q , which are
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It is useful to note that the structure of the streamer growth
rate is quite similar to that of the zonal field growth rate,
suggesting that kx$ky asymmetries in the spectrum may be
crucial for determining which has the larger growth rate.

Having established the potential for magnetic streamer
growth, it is important to assess their importance via inves-
tigating the transport they are expected to produce. One is
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immediately confronted with the fact that in the model used,
magnetic fluctuations cannot induce a flux !see Sec. III B".
Several ways of extending the model which might allow sig-
nificant flutter transport present themselves. The first is to
appeal to additional physics which could alter the phase shift
between v ! and Bx . What such a mechanism would be !per-
haps a current contribution from nonadiabatic ions", and
whether the phase could be altered strongly enough to have a
meaningful impact, are unclear. Alternatively, one might
search for a way to overcome the objections of Sec. III B to
transport due to parallel conduction along fluctuating field
lines. However, to make such a claim, one should have a
better understanding of the role of collisionality for large-
scale modes. Perhaps the most appealing possibility is to
relax the restriction on (z , which would lead to linear cou-
plings betwen the magnetic and electrostatic streamers. In-
deed, simulations by Beyer et al.15 suggest that streamers are
in fact composed of many different poloidal and toroidal
mode numbers. In contrast to the zonal case, where the elec-
trostatic and magnetic modes completely decouple, one
would have a single ‘‘electromagnetic’’ streamer with both
electrostatic and magnetic components; these components
would have independent nonlinear driving terms, but
coupled linear drives. Of particular interest would be to in-
vestigate whether the linear stabilizing properties of the mag-
netic component !analogous to the line-bending stabilization
effect of magnetic fluctuations on the linear mode" or its
nonlinear drive are dominant when it couples to the electro-
static component. Such calculations are left for a future pub-
lication. However, one observes that many of the same limi-
tations and issues raised in the previous section appear again
here, highlighting the need to quantify the role of collisional
damping and tertiary instabilities !e.g., the physical mecha-
nisms which determine streamer intensity" for streamers as
well as zonal modes.

V. CONCLUSIONS

A thorough understanding of electron transport remains
an open challenge to the magnetic fusion community. The
ETG mode is often invoked as a potential mechanism for
explaining the anomalously high electron transport. In this
paper, we have investigated the possibility of secondary elec-
trostatic and magnetic instabilities as potential saturation and
transport regulation mechanisms. In particular, we have in-
vestigated in detail zonal magnetic fields as novel saturation
mechanisms for the turbulence. Zonal magnetic fields are
generated via electrostatic convection of magnetic field and
current fluctuations, in clear analogy with mean-field dy-
namo theory, and saturate the turbulence via random mag-
netic shearing. It has been demonstrated that the underlying
k ! symmetry of the ETG mode leads to a decoupling of the
zonal magnetic field from the ‘‘traditional’’ electrostatic
zonal flow. We have also extended the idea of magnetic sec-
ondary instabilities to streamers. For streamers with q !%0,
one again has decoupled electrostatic and magnetic stream-
ers, where as these modes will linearly couple into a single
‘‘electromagnetic’’ streamer for finite q ! . More detailed stud-
ies of streamer physics in ETG are currently underway.

Our investigations have raised as many questions as they
have answered. The need for further study of magnetic Rey-
nolds stress inhibition of zonal flow growth has been dem-
onstrated. The inability of magnetic flutter to induce trans-
port seems to invalidate many of the more qualitative models
of electron thermal transport, but appears to be a direct con-
sequence of the relation between current and magnetic field.
Most importantly, the need for a detailed understanding of
the saturation mechanisms for ETG zonal modes and stream-
ers, both electrostatic and magnetic, is a recurring conse-
quence of our analysis. In particular, quantifying ‘‘tertiary’’
instabilities and collisional damping for the various second-
ary instabilities is key. It would also be useful to extend the
analysis to a nonlocal model, which would introduce mag-
netic shear into the dynamics. Quantifying the role of mag-
netic shear in tertiary instabilites, particularly for the zonal
field and magnetic streamer, would be of particular interest.
Another crucial issue for both ITG and ETG turbulence is
that of pattern selection, that is, whether zonal modes or
streamers are preferentially generated. At this time, the issue
is unresolved, but will be addressed in future publications.
Finally, we note that many of these questions should be trac-
table to analysis by both existing simulations, and extensions
of existing analytic ITG investigations.
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APPENDIX A: PROPERTIES OF POISSON BRACKETS

The Poisson brackets ) f ,g+"(“ f#“g)• ẑ offer a con-
vient shorthand notation for writing many of the nonlinear
terms encountered in plasma physics. In the course of modu-
lation stability analysis, it is often helpful to rewrite the Pois-
son brackets in terms of partial derivatives acting on both f
and g . In particular, the following identities are often found
to be of use:

) f ,g+"(y" . f.x g #$(x" . f.y g # , !A1"
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APPENDIX B: GENERALIZED EFFECT OF RANDOM
SHEAR AND GROWTH RATE MODULATION
ON SMALL-SCALE TURBULENCE

It has been noted previously6,7 that the coupled system
for electrostatic zonal flows and drift waves form a closed
system !of a predator–prey form" which conserves total en-
ergy. While the zonal flows are generated by the drift waves,
they also back-react on the turbulence via random shearing
in k-space. The back-reaction can easily be computed via
quasilinear formalism, and one finds coupled equations of
the form (N̄k"=Nk>),
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It is easy to see that Eq. !B2" describes how the random flow
shear leads to diffusion of the turbulence in kx , and will thus
increase =kx

2> !i.e., ‘‘eddy shearing’’". We now wish to extend
this result to include both the random magnetic shearing ef-
fects of the zonal field, as well as the effects of modulating
the growth rate by the zonal magnetic field and zonal pres-
sure. The theory of random shearing by both zonal fields and
flows is developed in Sec. III A. As usual, ray chaos, namely,
the overlap of wave group and zonal phase velocity reso-
nances, is necessary for the applicability of quasilinear
theory. For a unified treatment of all effects, we rewrite the
equation for =Nk> as
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Equation !26" for 8Nq can then be substituted in, giving the
generalized description for the back-reaction,
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Thus, including zonal magnetic fields and pressure leads to a
kx diffusion coefficient that reflects the electromagnetic char-
acter of the shearing, as well as a quasilinear growth rate via
modulation of the linear growth rate. The new diffusion co-
efficent is an intuitive generalization of the electrostatic case,
with *→*$ (,/2) vg!A . For the case of zonal magnetic
field generation, it is useful to note that as both , and vg! are
small quantities, it is possibile that random magnetic shear-
ing may not be as effective a saturation mechanism as the
flow shear. Clearly, case-by-case quantitative analysis is re-
quired.

It is also interesting to consider the nonlinear growth rate
created via modulation of the linear growth rate, and in par-
ticular, the effects of the zonal pressure. As .6k /.03(0
$0c)$1/2, there is the possibility of the zonal pressure intro-
ducing significant energy into the turbulence. A nonlinear
modulation analysis, then, is required to treat the regime near
marginality (030c). It was found that for zonal modes, the
pressure is essentially generated as a passive scalar by the
electrostatic mode, and uncorrelated with the zonal magnetic
field. Thus, in the electrostatic case, one might expect a com-
petition between the random shearing of the zonal flow as a
saturation mechanism, and energy reintroduced into the tur-
bulence via the zonal pressure. Again, this is an issue that
should be addressed in a more quantitative fashion. Finally,
we note that the introduction of zonal magnetic fields and
pressures suggests interesting extensions of the predator–
prey model developed in Diamond et al.6

1B. W. Stallard, C. M. Greenfield, G. M. Stabler et al., Phys. Plasmas 6,
1978 !1999".
2F. Ryter, F. Leuterer, G. Pereverzev et al., Phys. Rev. Lett. 86, 2325
!2001".
3F. Y. Gang, P. H. Diamond, and M. N. Rosenbluth, Phys. Fluids B 3, 68
!1991"; T. S. Hahm and W. M. Tang, ibid. 3, 989 !1991".
4B. B. Kadomtsev, Tokamak Plasma: A Complex Physical System !Institute
of Physics, Bristol, 1992".
5R. D. Sydora, Phys. Plasmas 8, 1929 !2001".
6P. H. Diamond, M. N. Rosenbluth, F. L. Hinton et al., 17th IAEA Fusion
Energy Conference, Yokohama, Japan, 1998 !International Atomic Energy
Agency, Vienna, 1998", IAEA-CN-69/TH3/1.
7P. H. Diamond, S. Champeaux, M. Malkov et al., 18th IAEA Fusion En-
ergy Conference, Sorrento, Italy, 2000 !International Atomic Energy
Agency, Vienna, 2001", IAEA-CN-77/TH2/1.
8Z. Lin, T. S. Hahm, W. W. Lee et al., Science 281, 1835 !1998".
9Y. C. Lee, J. Q. Dong, P. N. Guzdar, and C. S. Liu, Phys. Fluids 30, 1331
!1987".

10W. Horton, B. G. Hong, and W. M. Tang, Phys. Fluids 31, 2971 !1988".

3865Phys. Plasmas, Vol. 9, No. 9, September 2002 Electromagnetic secondary instabilities . . .



11F. Jenko, W. Dorland, M. Kotschenreuther, and B. N. Rogers, Phys. Plas-
mas 7, 1904 !2000".

12Y. Idomura, M. Wakatani, and S. Tokuda, Phys. Plasmas 7, 3551 !2000".
13P. N. Guzdar, R. G. Kleva, A. Das, and P. K. Kaw, Phys. Rev. Lett. 87,
015001 !2001".

14I. Gruzinov, P. H. Diamond, and A. Smolyakov, Phys. Rev. Lett. !submit-
ted".

15P. Beyer, S. Benkadda, X. Garbet, and P. H. Diamond, Phys. Rev. Lett. 85,
4892 !2000".

16R. Singh, P. K. Kaw, and J. Weiland, 18th IAEA Fusion Energy Confer-
ence, Sorrento, Italy, 2000 !International Atomic Energy Agency, Vienna,
2001", IAEA-CN-77/TH2/4.

17B. Labit and M. Ottaviani, Phys. Plasmas !submitted".
18M. N. Rosenbluth and F. L. Hinton, Phys. Rev. Lett. 80, 724 !1998".
19S. Childress and A. Gilbert, Stretch, Twist, Fold: The Fast Dynamo
!Springer, Berlin, 1995".

20A. B. Rechester and M. N. Rosenbluth, Phys. Rev. Lett. 40, 38 !1978".
21F. Jenko and W. Dorland, Plasma Phys. Controlled Fusion 43, A141
!2001".

22B. N. Rogers, W. Dorland, and M. Kotschenreuther, Phys. Rev. Lett. 85,
5336 !2000".

23W. Dorland, F. Jenko, M. Kotschenreuther, and B. N. Rogers, Phys. Rev.
Lett. 85, 5579 !2000".

3866 Phys. Plasmas, Vol. 9, No. 9, September 2002 C. Holland and P. H. Diamond


